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Lecture Note 2: NP-Hardness 

Introduction 

Suppose that you submitted a research manuscript to a journal. It is very unlikely that your paper will 

be accepted at the first review. Reviewers usually ask you to do more tasks, which could make your 

work look more completed. They might ask you to solve a particular problem. 

You did try to solve the problem, but it seems to be very hard. The deadline for the resubmission 

is getting close. You want to tell the reviewers that “it is not possible to solve the problem”, but they 

might not believe you and reject your paper. In this lecture, we will discuss how to “formally” say that 

a solution for the problem is not possible. 

Actually, there is no formal way to say that. Instead, we can try to say that “many great 

researchers have already tried to solve the problem but failed”. We can hire 100 great researchers, have 

them solve the problems, and claim that the problem is hard when it is not solved. However, that could 

be too costly for just a publication. 

However, there are a hard problem that “many great researchers have already tried but failed”. 

Most computer scientists believe that the hard problem cannot be solved. Instead of proving that the 

problem cannot be solved, we will prove that “if we cannot solve the hard problem, we cannot solve 

the reviewers’ problem”. Your problem cannot be solved based on the assumption that the hard problem 

cannot be solved. However, the assumption is very widely believed. Everyone including the reviewers 

should believe in that assumption. Because of that, by proving the statement, they should believe that 

their problem is also hard. By contrapositive, the proposition in the previous sentence is equivalent to 

“If we can solve the reviewers’ problem, we can solve the hard problem”. 

Reduction 

Let us discuss how to prove the proposition “If we can solve the reviewers’ problem, we can solve the 

hard problem”.  

We will assume that “we can solve the reviewers’ problem”. Because we can solve it, there is 

a program for the reviewers’ problem that can terminates in polynomial time. Suppose that the program 

is written in a library you can download in the internet, and we can call the library by the following 

way: 

Output ReviewerProblem(Input1, Input2, …, InputK); 

 Based on the assumption, we will prove that “we can solve the hard problem”. We will write a 

program that can solve the hard problem. Inside the program, we can use the function ReviewerProblem 

as many times we want, as far as the running time of the function HardProblem is still polynomial. 

Output HardProblem(Input1, Input2, …, InputM){ 

      //Your code here 

} 

If you can successfully write the program, then you can prove the proposition. We can formally state 

that the reviewers’ problem is not likely to be solved. It is interesting that, when you want to show that 

a problem is solvable, you have to write a program for the problem. When you want to show that a 

problem is not solvable, you also have to write a program for the other problem. 

When we can prove that “If we can solve the reviewers’ problem, we can solve the hard 

problem”. We can informally say that “the reviewers’ problem is not easier than the hard problem”.  

  



The Hard Problem 

Now, it is the time to define what the hard problem is. The problem is called as satisfiability, which can 

be informally described as follows: 

Input: A logic circuit that has two levels. The first level is for or gate, and the second is for 

and gate. One input can enter more than one different or gates. There might be not 

gates in front of the or gate. 

Output:  Yes or No 

Constraint:  Yes, if it is possible to make the circuit output “true”. No, otherwise. 

An input example is shown in the below image. We can have the output “true” when 𝑠1 is true, 𝑠2 is 

true, 𝑠3 is false, and 𝑠4 is true. Thus, when the input is the below logic circuit, the output of satisfiability 

problem should be yes. 

Because many great researchers have tried to solve satisfiability problem but failed, everyone 

believe that it is a good benchmark. We call a problem that is not easier than satisfiability an NP-hard 

problem. 

Now, let consider the following problem. 

Input: A logic circuit that has two levels. The first level is for or gate, and the second is for 

and gate. One input can enter more than one different or gates. There might be not 

gates in front of the or gate. 

Output:  Values (true or false) for all inputs to the logic circuit.  

Constraint:  If it is possible to make the circuit output “true”, output the values that make the circuit 

true. Otherwise, output an arbitrary value. 

We will prove that the problem is NP-Hard. To do that, we will assume that there exists a library 

for our problem. 

Values ourProblem(circuit c); 

Then, we can write the following program for satisfiability. 

boolean satisfiability(circuit c){ 

 Values v = ourProblem(c); 

 If the circuit c outputs true from the values v: 

  return yes 

 Else return no 

} 

When the circuit 𝑐 outputs “true” from the values 𝑣, we know that it is possible to have “true” from the 

circuit. The output of satisfiability should be yes. On the other hand, the function ourProblem 

will try its best to find values that lead to true output at the logic circuit. The only case that 𝑣 does not 

lead to the true output is when it does not exist. Because of that, the output of satisfiability should 



be no in that case. We know that the above satisfiability function can be used to the satisfiability 

problem.  

 We can conclude that our problem is not easier than satisfiability, and is NP-Hard problem by 

the program. 

Hardness of Densest Subgraph Problem 

In this section, we will study a problem in social networks. A social network consist of a set of persons, 

and a set of friendships between two persons. For example, a network might contain 5 persons, 

{𝐴, 𝐵, 𝐶, 𝐷, 𝐸}, and a set of friendship, {{𝐴, 𝐵}, {𝐵, 𝐶}, {𝐴, 𝐶}, {𝐶, 𝐷}, {𝐷, 𝐸}}. We know that 𝐴 is a friend 

of 𝐵 and 𝐶, 𝐵 is a friend of 𝐴 and 𝐶, 𝐶 is a friend of 𝐴, 𝐵, and 𝐷, 𝐷 is a friend of 𝐶 and E, then 𝐸 is a 

friend of 𝐷. 

 

 We want to find a set of celebrities in a social networks. There are many ways to do that, but 

we observe that celebrities usually know a lot of other celebrities through a number of events and parties 

organized every months. A number of relationships between celebrities should be large. Because we 

want to find a set of celebrities, we set the following optimization model: 

Input:   A social networks, expected number of celebrities 

Output:   A set of persons that might be celebrities 

Objective Function:  Maximize the number of friendship between persons in the selected set 

The mathematical formulation of the previous problem is as follows: 

Input:   Set 𝑉 (persons), set 𝐸 ⊆ {{𝑢, 𝑣}: 𝑢, 𝑣 ∈ 𝑉} (friendships),  

Positive integer 𝑘 (number of celebrities) 

Output:   𝑆 ⊆ 𝑉 

Objective Function: Maximize |{𝑒 ∈ 𝐸: 𝑒 ⊆ 𝑆}| 

We call the problem “densest subgraph problem”. We want to show that the problem is NP-

hard, so we have to write a program for satisfiability based on a library for the problem. 

There is a very clear relationship between our problem and satisfiability in the previous section. 

We do not have that clear relationship for the “densest subgraph problem”. A library for the densest 

subgraph problem might not be very helpful for satisfiability. Luckily, a very large number of problems 

are proved to be NP-hard. Those problems are known to be not easier than satisfiability. If we can prove 

that our problem is not easier than them, then we know that our problem is not easier than satisfiability. 

A collection of NP-hard problems can be found in [1]. We can search for the most similar problem and 

begin the proof there. 

Among problems in the collection, let us choose 𝑘-clique problem, which can be formally 

defined as follows: 



Input:   Set 𝑉, set 𝐸 ⊆ {{𝑢, 𝑣}: 𝑢, 𝑣 ∈ 𝑉}, integer 𝑘   

Output:   Yes or No 

Constraint: Yes, if there is 𝑆  such that |𝑆| = 𝑘  and, for all 𝑣1, 𝑣2 ∈ 𝑆 , {𝑣1, 𝑣2} ∈ 𝐸 .  

No, Otherwise. 

 In our social network settings, the output of the 𝑘-clique problem is yes, if there exists 𝑆 such 

that every members of 𝑆 are friends of all other members.  

The 𝑘-clique problem is proved to be not easier than satisfiability. We will prove that the 

densest subgraph problem is not easier than 𝑘-clique problem. That will immediately imply that the 

densest subgraph problem is not easier than the satisfiability problem. 

 To prove that the densest subgraph problem is not easier than 𝑘-clique problem, we will write 

a program for 𝑘-clique problem based on the assumption that a library for the densest subgraph problem 

is provided. The program is as follows: 

Set densestSubgraph(Set V, Set E, int k); 

boolean kClique(Set V, Set E, int k){ 

       Set S = densestSubgraph(V, E, k) 

       If, for all v1, v2 in S, {v1, v2} is in E: 

              return true 

       Else 

              return false 

} 

 When every members of 𝑆 from densestSubgraph are friends of all other members, then we 

know that there exists such a set. The output of the 𝑘-clique problem should be yes. On the other hand, 

the output from densestSubgraph is supposed to be a group of persons with maximum number of 

friendships. If, even in a group with maximum number of friendships, we miss some friendships, we 

should miss some friendships in every groups. The output of the 𝑘-clique problem should be no. The 

program we write in kClique corresponding to that idea, so it is a valid program for 𝑘-clique problem.  

 By the previous paragraphs, densestSubgraph is not easier than 𝑘-clique, and the problem 

is NP-hard. 

NP-Completeness 

 You might have not heard about NP-hardness but NP-completeness. In my opinion, NP-hard 

has more practical meanings for optimization models, but we would like to define NP-completeness for 

the self-containment of this manuscript. 

 While an NP-hard problem is a problem that is not easier than satisfiability, an NP-complete 

problem is a problem that is “as hard as” satisfiability. To prove that a problem is “as hard as” the 

satisfiability problem, the proof has to be done in 2 ways. We have to show that our problem is not 

easier than satisfiability, and we have to show that satisfiability is not easier than our problem. To get 

that, we need a program for satisfiability based on a library for our problem, then a program for our 

problem based on a library for satisfiability. 

 A collection of NP-complete problems can also found in [1]. Those problems are all as hard as 

satisfiability. In the previous paragraph, we can replace satisfiability with any of the problems, when 

we want to prove that a particular problem is NP-complete.  

 It is very interesting that a very large number of IST optimization models have the same 

hardness.  



Product Selection Problem 

In this section, we will give you an example how NP-hard concepts are used in recent research. The 

first recent problem that will be introduced is called “product selection problem” [2]. 

 Suppose that we are a notebook company. We want to issue new models and our R&D section 

propose a number of possible models. We have a budget to issue only a smaller set of possible models, 

and we want to choose a set that optimize our profit. 

 Again, you have to design the best optimization model for this setting. There are many ways to 

formalize the problem here, and you have to think how to make the models similar to practice. Let us 

believe that customers choose a computer based on only 3 factors, weight, speed, and harddisk space. 

They will have their own specification, and they will choose a computer that satisfy their specifications 

with lowest price.  

For example, suppose that our R&D section propose 3 models with the following information: 

 Model A: Weight 2 kg, Speed 1.5 MHz, Space 1 TB, Price 70,000 Yen 

 Model B: Weight 1.3 kg, Speed 1.5 MHz, Space 500 GB, Price 100,000 Yen 

 Model C: Weight 1.3 kg, Speed 1.8 MHz, Space 1 TB, Price 170,000 Yen 

Our competitive have the following notebook model in the market. 

 Model D: Weight 1 kg, Speed 1.8 MHz, Space 2 TB, Price 300,000 Yen 

 Model E: Weight 2.5 kg, Speed 1.5 MHz, Space 500 GB, Price 50,000 Yen 

 Model F: Weight 0.9 kg, Speed 0.7 MHz, Space 200 GB, Price 100,000 Yen 

We predict that there are 4 customers in the market with the following specifications: 

 Customer 𝛼: Weight ≤ 1.4 kg, Speed ≥ 1.6 MHz, Space ≥ 1.5 TB 

 Customer 𝛽: Weight ≤ 3 kg, Speed ≥ 1 MHz, Space ≥ 1 TB 

 Customer 𝛾: Weight ≤ 2 kg, Speed ≥ 1.5 MHz, Space ≥ 1 TB 

 Customer 𝜂: Weight ≤ 2 kg, Speed ≥ 1 MHz, Space ≥ 500 GB 

Suppose that, out of the 3 models proposed by R&D section, we can produce only 2 models. 

Let us consider the case that we should model 𝐴 and 𝐵. Customer 𝛼 will choose Model D as it is the 

only model available for him. Customer 𝛽 can choose among model 𝐴, 𝐶 and 𝐷, and he will choose 

model 𝐴. Customer 𝛾 can choose among model 𝐴, 𝐶 and 𝐷, and he will choose model 𝐴. Customer 𝜂 

can among model 𝐴, 𝐵, 𝐶, 𝐷, and he will choose model 𝐴. We will have 3 customers. Actually, this 

choice does maximize the number of customers, so we believe that the choice is the most desirable. 

It is now time to specify the problem using a mathematical model. The model below is more 

generalized than discussed above. We do not limit to only weight, speed, and space, but anything can 

be the factors. Also, we can have more than 3 factors. 

Input:   Number of proposed models – positive integer 𝑛 

   Properties of each proposed models  

                                                                                           – vectors of positive real numbers 𝑃1, … , 𝑃𝑛 

   Price for each proposed models – positive integers 𝑝1, … , 𝑝𝑛 

   Number of models from competitors – non-negative integer 𝑚 

   Properties of models from competitors 

                                                                                           – vectors of positive real numbers 𝑄1, … , 𝑄𝑚 

   Price of models from competitors – positive integers 𝑞1, … , 𝑞𝑚 



   Number of customers – positive integer 𝑑 

   Specification of each customers – vectors of positive real numbers 𝐶1, … , 𝐶𝑑 

   Number of models going to production – positive integer 𝑘 

Output:   Set of models going to production 𝑆 ⊆ {1, … , 𝑛} 

Constraint:  |𝑆| = 𝑘 

Objective Function: Our price to customer 𝑖, 𝑓𝑖 = min
𝑗∈𝑆:𝑃𝑗≤𝐶𝑖

𝑝𝑗 

   Competitors’ price to customer 𝑖, 𝑓𝑖
′ = min

𝑗:𝑄𝑗≤𝐶𝑖

𝑞𝑗 

   Maximize |{𝑖 ∈ {1, … , 𝑑}: 𝑓𝑖 < 𝑓𝑖
′}| 

We call the above problem as the produce selection problem. To prove that the problem is NP-

hard, we can search for the problem in [1]. However, for this case, it is much easier when we use recent 

research results in [3]. If we read a lot of research papers or listen to a lot of research talk, you will turn 

to know more NP-hard problems. That will help when you want to prove that a particular problem is 

NP-hard. 

 The problem in [3], called 𝑘-most representative skyline operator is defined as follows: 

Input: positive integer 𝑛, vectors of positive real numbers 𝑃1, … , 𝑃𝑛 

positive integer 𝑑, vectors of positive real numbers 𝐶1, … , 𝐶𝑑 

positive integer 𝑘 

Output:   𝑆 ⊆ {1, … , 𝑛} 

Constraint:  |𝑆| = 𝑘 

Objective Function: Maximize |{𝑖 ∈ {1, … , 𝑑}: there exists 𝑗 ∈ 𝑆 such that 𝐶𝑖 ≤ 𝑃𝑗}| 

 Let us get back to the product selection problem. Consider the case that there is no model from 

competitors. In that case, 𝑚 = 0 and 𝑓𝑖
′ = min

𝑗:𝑄𝑗≤𝐶𝑖

𝑞𝑗 is not defined as it is the minimum of empty set. 

We can informally consider the non-defined value as infinity, so 𝑓𝑖
′ → ∞ for all 𝑖. On the other hand, 

𝑓𝑖 → ∞ only when there is no 𝑗 ∈ 𝑆 such that 𝑃𝑗 ≤ 𝐶𝑖. Because of that, 𝑓𝑖 < 𝑓𝑖
′ if and only if there is 

𝑗 ∈ 𝑆 such that 𝑃𝑗 ≤ 𝐶𝑖. We know that, when 𝑚 = 0,  

|{𝑖 ∈ {1, … , 𝑑}: 𝑓𝑖 < 𝑓𝑖
′}| = |{𝑖 ∈ {1, … , 𝑑}: there exists 𝑗 ∈ 𝑆 such that 𝐶𝑖 ≤ 𝑃𝑗}|, 

and the two problems are equivalent. 

 Because of the discussion in the previous paragraph, when we have a library for the product 

selection problem, we can write the following program for the 𝑘-most representative skyline operator 

problem: 

Set productSelection(int n, Vector[] P, double[] p, int m, Vector[] Q, double[] q,   

                                                          int d, Vector[] C, int k); 

Set kMostRepresentativeSkyline(int n, Vector[] P, int d, Vector[] C, int k){ 

       Let p be any arbitrary array length n; 

       return productSelection(n, P, p, 0, [], [], d, C, k); 

} 

Thus, the product selection problem is NP-hard problem. 

  



Exercises 

Recall the satisfiability problem. We have two layers, the or layer and the and layer there. The circuit 

will be satisfied if all the outputs from the or layer is true. Let us suppose that we do not want to have 

all the outputs from the first layer be true, but have the number of true outputs as large as possible. 

Question 1: What is the input of your optimization model? 

Question 2: What is the output of your optimization model? 

Question 3: What is the constraint of your optimization model? 

Question 4: What is the objective function of your optimization model? 

 

Question 5: What would be a desired output of your optimization model when the input is the above 

circuit? 

Question 6: Show that your optimization model is NP-Hard. 

Instead of working on true and false value, we will have true = 1 and false = 0 as in many computer 

languages. 

Question 7: Discuss why the most upper or gate outputs true if and only if (1 − 𝑠1) + 𝑠2 ≥ 1. 

Question 8: Discuss why this circuit can be satisfied if there are 𝑠1, 𝑠2, 𝑠3 ∈ {0,1} such that  

 (1 − 𝑠1) + 𝑠2 ≥ 1, 

 (1 − 𝑠2) + 𝑠3 ≥ 1, and 

 (1 − 𝑠3) + 𝑠1 ≥ 1. 

Question 9: Consider the following input to CPLEX. What is the reason between the input and the 

satisfiability conditions discussed Question 8? 

Minimize 

s1 

st 

-s1 + s2 >= 0 

-s2 + s3 >= 0 

-s3 + s1 >= 0 

end  

Question 9: Check which outputs you have got from CPLEX. Can you say anything about the output of 

satisfiability based on the outputs? 

Question 10: Although we can find a desirable output for this input, discuss why we cannot use CPLEX 

to find a desirable output for any particular inputs. 
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